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Abstract. In recent years, single image deraining has received consider-
able research interests. Supervised learning is widely adopted for training
dedicated deraining networks to achieve promising results on synthetic
datasets, while limiting in handling real-world rainy images. Unsuper-
vised and semi-supervised learning-based deranining methods have been
studied to improve the performance on real cases, but their quantitative
results are still inferior. In this paper, we propose to address this crucial
issue for image deraining in terms of backbone architecture and the strat-
egy of semi-supervised learning. First, in terms of network architecture,
we propose an attentive image deraining network (AIDNet), where resid-
ual attention block is proposed to exploit the beneficial deep feature from
the rain streak layer to background image layer. Then, different from
the traditional semi-supervised method by enforcing the consistency of
rain pattern distribution between real rainy images and synthetic rainy
images, we explore the correlation between the real clean images and the
predicted background image by imposing adversarial losses in wavelet
space IHH , IHL, and ILH , resulting in the final AID-DWT model. Exten-
sive experiments on both synthetic and real-world rainy images have
validated that our AID-DWT can achieve better deraining results than
not only existing semi-supervised deraining methods qualitatively but
also outperform state-of-the-art supervised deraining methods quanti-
tatively. All the source code and pre-trained models are available at
https://github.com/cuiyixin555/DeRain-DWT.

Keywords: Single image deraining · Semi-supervised learning ·
Attention · Discrete wavelet transform

1 Introduction

Single image deraining is a challenging task, and has a board application prospect
in object detection, outdoor recognition and automatic driving [4,11] when fac-
ing bad weather condition. Image deraining can be regarded as an image decom-
position problem that rainy image can be separated into rain pattern space R
and clean background image space X . Previously, traditional optimization algo-
rithms, e.g. low-rank model, sparse code model, and Gaussian mixture model
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[1,15,18,21,25], etc., are adopted as the priors of rain streak layer and back-
ground image layer. However, these handcrafted designed priors are limited in
modeling the complicated composition pattern of real-world rainy images, and
also they are very time-consuming. With the rapid development of deep learning
in recent years, learning-based deraining methods have achieved great progress.
Supervised learning is introduced to address image deraining problem, and many
Convolutional Neural Networks (CNNs)-based methods for single image derain-
ing have been proposed [6,8,24,26,28–30,33,41]. These methods employ deep
networks to automatically extract features of layers, enabling them to model
more complex mappings from rainy images to clean images. Albeit great quanti-
tative results on synthetic datasets, they cannot well deal with real-world rainy
images. Then, unsupervised learning and semi-supervised learning are suggested
to exploit real-world rainy images, leading to better generalization in practi-
cal applications. But unsupervised deraining method is quantitatively inferior
to supervised deraining methods. In [31,35], transfer learning is introduced to
transfer deraining model trained on synthetic images to real rainy images. As
for heavy rainy image, these semi-supervised deraining methods can not process
it, and there is leeway to improve deraining visual quality.

In this paper, we adopt semi-supervised strategy that we design a residual
attention image deraining network and introduce real clean images to make our
network learn the similarity of image texture in discrete wavelet space. In par-
ticular, we design the main network into two parts, where one is used to extract
rainy streak layer, and the other is used to recover clean background image.
As training iterations increasing, each convolution attention block is used as
a coefficient unit for rainy pattern feature aggregation in image space. As for
semi-supervised stage, to make the predicted clean background more natural,
we design a discriminator which contains multiple convolutional layers to cal-
culate adversarial losses between real-world clean images and predicted clean
images in three subband fHH , fHL and fLH . As for residual attention modules,
we adopt 4 kinds of attention modules to explore its performance advantages in
our deraining backbone.

Extensive experiments have been conducted on both synthetic and real-world
rainy benchmark datasets. Our model quantitatively outperforms not only semi-
supervised deraining method qualitatively but also state-of-the-art supervised
deraining methods quantitatively.

Our contributions can be summarized from three aspects:

– We propose a simple yet effective semi-supervised deraining approach by Dis-
crete Wavelet Transform (DWT), via which real-world clean images can be
easily used to benefit the generalization ability of trained deraining model.

– We design a residual attention-based image deraining model to enhance the
separation of the rain streak layer and the corresponding background layer;
We use a ordinary convolution attention block for rain streak feature extrac-
tion, and compare with the other three attention modules, such as self-
calibration block [17], attention feature fusion block [36] and self-attention
block [39].
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Fig. 1. The architecture of Semi-supervised deraining with Haar Wavelet Transform.

– Extensive experiments on synthetic and real-world rainy images have been
conducted to validate that our model is superior to both supervised and
semi-supervised deraining methods.

2 Related Works

Deep learning-based image deraining has been widely studied with the super-
vised learning manner, where various network architectures are designed to learn
the mapping from rainy image to clean background image. In pioneer works
[5,6], CNN and ResNet are first adopted to predict clean background image,
outperforming conventional deraining methods. Subsequently, more complicated
network architectures are proposed to better extract deep features from rainy
images. In [28,30], multi-scale strategy can help model learn image features
under different scales and enhance its robustness; Especially the application of
dilation convolution is proposed, which is benefited in detecting and removing
rain streaks simultaneously. In [14,26], recurrent networks are proposed to handle
heavy rain streak accumulation. In [29,37], densely connected CNN is adopted
for jointly estimating rain density and removing rain streaks. Besides, there are
several works to incorporate lightweight networks in a cascaded scheme [3] or in
a Laplacian pyramid framework [7].
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Moreover, in [38], the authors propose to take advantage of adversarial learn-
ing to enhance the texture details in derained images. Most recently, pre-trained
transformer [8] is introduced to significantly improve the quantitative metrics for
image deraining. To sum up, supervised learning-based deraining methods have
achieved excellent performance on paired synthetic datasets, but the trained
deraining model are likely to poorly generalize to real-world rainy images. Then,
unsupervised learning and semi-supervised learning are suggested to exploit real-
world rainy images, leading to better generalization in practical applications. In
[42], Zhu et al. proposed to adopt CycleGAN [43] to exploit unpaired real rainy
images, which can improve generalization ability to real rainy images. In [31],
SIRR is proposed to transfer deraining model trained on synthetic images to
real rainy images. In [35], Syn2Real is proposed by adopting Gaussian processes
to exploit both synthetic and real rainy images. However, these semi-supervised
and unsupervised deraining methods may also be inferior to supervised methods
in terms of quantitative metrics, and there is leeway to improve deraining visual
quality.

3 Semi-supervised Image Deraining by DWT

In this section, we first present the proposed semi-supervised deraining frame-
work by discrete wavelet transform in Sect. 3.1, and then give the details of
residual attention framework in Sect. 3.2, finally the realization of our semi-
supervised training method on the discrete wavelet transform is explained in
Sect. 3.3.

3.1 Methodology Overview

As shown in Fig. 1, we propose to exploit real-world rainy images without paired
ground-truth when training deraining networks, which is a semi-supervised app-
roach. Different from [31,35], we propose a simple yet effective discriminative
learning strategy by DWT to enforce the feature consistency of clean back-
ground from synthetic and real-world clean images on three subband fHH , fHL

and fLH . As shown in Fig. 1, the entire network structure is divided into two
parts; One is LSTM followed by 5 resblocks for background prediction, and the
other is LSTM followed by 3 resblocks to rain streak extracted. Between the
upper and lower parts, the residual attentive blocks is applied to converge rain
pattern feature removal in image space. Formally, the procedure is described as

Resr
t
i = Fresi(hr

t−1), i = 1, 2, 3

Resx
t
j = Fresj (hx

t−1), j = 1, 2, 3, 4, 5

Rabx
t
k = Frabk(resrti) × resx

t
j + resx

t
j , k = 1, 2, 3

(1)

where hidden state hr is from LSTM in space R, hidden state hx is from LSTM
in space X , resr

t
i indicates the residual map of i-th ResBlock in space R, resx

t
j

denotes the residual map of j-th ResBlock in space X . And thus there are three
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Fig. 2. Top row : (a) self-calibrated attention, (b) convolutional attention. Bottom row :
(c) feature fusion attention, (d) self-attention.

RAB modules, where rabx
t
k connects the i-th ResBlock in R and j-th ResBlock

in X , exploiting the beneficial deep features between R and X . The last crucial
issue is how to determine the connections of i and j. To answer this question, we
conducted experiments on Rain200H datasets [28] to validate the effectiveness
of different connections. We will explain it specificly.

Finally, the predicted background Xg is used to initialize discrete wavelet
transform discriminator network. When training deraining model shown on bot-
tom row by only using real-world clean images, adversarial losses calculated in
predicted background Xg and real clean image Xc in fHH , fHL and fLH that is
adopted to enforce its the consistency of feature distribution. Our model AID-
DWT can achieve better results than existing semi-supervised and supervised
deraining methods.

Overall, AID-DWT model consists of three parts: (i) Recurrent training for
rain streak extracted and clean background image predicted with ResLSTM
framework; (ii) Applying attention block for extracting rainy pattern feature
strongly in image space; (iii) Calculating three subband adversarial losses on
fHH and fHL and fLH .

3.2 Residual Attentive Network Architecture

The good design of attention block can describe the rain pattern feature to the
maximum extent. With the structure of deep CNNs becoming more and more
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Fig. 3. Examples about the comparison of our method with other methods on
Rain200H dataset.

complicated, extracting mean feature and max feature by average pool and max
pool is not enough to achieve satisfactory results. Thanks to variety of attention
module [17,32,36,39], as shown in Fig. 2, we will explain them respectively.

Self-Calibrated Block (SC): Different from the traditional attention mecha-
nism, its usually performs operations in the dimension of the feature to obtain
the average feature and the maximum feature. SC block has four parts of filters,
i.e., [K1, K2, K3, K4]. Through splitting filters, the input X with channel C is split
into X1 and X2 through 1 × 1 convolution with the channel C/2. Reviewing the
entire self-calibrated convolution, it enables each spatial position to adaptively
encode the context, which make difference between it and traditional attention
block (CA).

Self-Attention Block (SAN): In [39], Zhao et al. firstly introduce feature
aggregation into pairwise self-attention block. The whole procedure is describe
as

yi =
∑

j∈R(i)

α(xi, xj) � β(xj), (2)

where xi and xj are feature maps with indexes i and j, � is the Hadamard
product called aggregated with R(i). In order to utilize more surrounding pixels,
the size of footprint is set 5 × 5.

Attention Feature Fusion Block (AFF): Similar to traditional convolution
attention block (CA), AFF block [36] extracts the key pixels, as well as processes
the residual information further. The whole process can be described as
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Fig. 4. Examples about the comparison of our method with other methods on real-
world datasets.

αi = Local(xi) + Global(xi), (3)

yi = xi × α + Res(xi) × (1 − α), (4)

where αi is a attentional factor that is realized through a local attention block
and a global attention block; A local attention block include multi-layer con-
volution that help model to learn feature based on dimension, while a global
attention contains global average pool to extracted feature on space. Finally, the
original feature xi and the residual feature Res(xi) are proportionally distributed
through attentional factor, which effectively solves the problem of information
decreased as the number of convolution layers increases.

Convolution Attention Block (CA): As a traditional attention block, CA
is widely used in feature extraction. As for input feature map F (H×W×C), it
will be dealt with global max pooling and global average pooling, respectively
to obtain two 1 × 1 × C features. And then, its will be sent to a two-layer
neural network (MLP) that the number of neurons in the first layer is C/r (r is
the reduction rate), the activation function is Relu, and the number of neurons
in the second layer is C; The two-layer neural network is shared. After that,
the MLP output features are subjected to an element-wise addition operation,
as well as the sigmoid activation operation is performed to generate the final
channel attention feature, namely Mc. Finally, the Mc and the input feature
map F are subjected to an element-wise multiplication operation to generate
the input features required by the Spatial attention module.
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3.3 Discriminator by DWT for Semi-supervised Method

In 2D Discrete wavelet transform (DWT), four filters, i.e. fLL, fLH , fHL, and
fHH , are used to convolve with an image x [19]. To illustrate the three subband
filter, we first give the definition of fLH , fHL, and fHH ,

fLH =
[−1 −1

1 1

]
, fHL =

[−1 1
−1 1

]
, fHH =

[
1 −1

−1 1

]
. (5)

Given an image x with size of m × n, the (i, j)-th value of x1 after 2D discrete
transform can be written as x1(i, j) = x(2i−1, 2j −1)+x(2i−1, 2j)+x(2i, 2j −
1) + x(2i, 2j). Even though the downsampling operation is deployed, due to the
biorthogonal property of DWT, the original image x can be accurately recon-
structed by the inverse wavelet transform (IWT), i.e., x = IWT (x1,x2,x3,x4).

In order to make our predicted clean background image have similar tex-
ture distribution with real-world clean image, we introduce adversarial loss in
the three subband image fHH , fHL, fLH . First, we achieve Xhh, Xhl and Xlh by
Hadamard product with above three subband. Our goal is to train the discrim-
inator with the above subband images as

Lhh = Adv(Xi
hh,Xc

hh), (6)

Lhl = Adv(Xi
hl,X

c
hl), (7)

Llh = Adv(Xi
lh,Xc

lh), (8)

where Adv is WGAN-GP Loss, as well as Xi and Xc are denoted as a predicted
background and a real-world clean image, respectively. So, we can treat Xc

hh,
Xc

hl and Xc
lh as pseudo label for corresponding predicted output.

4 Experimental Results

In this section, we conduct extensive experiments to demonstrate the effective-
ness of the proposed method on widely used four synthetic datasets and two
real-world datasets. Eight state-of-the-art baseline are compared in this paper.
Next, we will introduce the datasets and measurements in details as in Sect. 4.1,
implementation details in Sect. 4.2, results on synthetic datasets and real-world
datasets in Sect. 4.3 and ablation study in Sect. 4.4, respectively.

4.1 Datasets and Measurements

Our experiment is verified on four synthetic datasets and two real-world datasets,
such as Rain200H [28], Rain1200 [37], Rain1400 [6] and Rain12 [16] for synthetic,
as well as SPADatasets [27] and Real275 for real-world datasets. Rain200H has
heavy rain with different shapes, directions and sizes, which is the most chal-
lenging dataset including 1800 images for training and 200 images for testing.
Rain200L contains the same number of pictures, which has light rain and easy to
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trained. Rain1200 has three different level of rain images, including heavy rain,
medium rain and light rain, which contains 12000 training images and 1200 test-
ing images. Rain1400 has medium level rain images, which includes 12600 images
for training and 1400 images for testing. Rain12 has 12 images for testing. SPA
Datasets include 1000 testing images with labels. In addition, we has achieve 275
real rainy images from Internet. We has trained our proposed model on different
datasets for verifying its robustness.

Table 1. The values of PSNR, SSIM and NIQE on two real datasets. Red, blue and
cyan colors are used to indicate top 1st, 2nd and 3rd rank, respectively.

NLEDN [13] ReHEN [34] PReNet [26] RPDNet [22] AID AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPA 30.596 0.9363 32.652 0.9297 32.720 0.9317 32.803 0.9337 31.721 0.9359 33.263 0.9375

Dataset Derain GT Derain GT Derain GT Derain GT Derain GT Derain GT

Real275 3.5554 – 3.7355 – 3.7745 – 3.8957 – 3.6013 – 3.5519 –

MSPFN [10] DRDNet [2] SIRR [31] Syn2Real [35] AID AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPA 29.538 0.9193 28.083 0.9126 22.666 0.7474 31.824 0.9307 31.721 0.9359 33.263 0.9375

Dataset Derain GT Derain GT Derain GT Derain GT Derain GT Derain GT

Real275 3.8616 – 3.6634 – 3.5592 – 4.0372 – 3.6013 – 3.5519 –

4.2 Implementation Details

Our AID-DWT networks are implemented using Pytorch [23] framework, adopt
ADAM [12] algorithm for optimization, and are trained on PC equipped with
two NVIDIA GTX 2080Ti GPUs. In our experiments, all the network shared
the same training setting. We trained the network for 100 epochs. Each pair of
training of samples will be randomly cropped 100× 100 pixels. Adam optimizer
is used with a learning rate of 0.001 which is divided by 5 after the 30th epochs,
50th epochs and 80th epochs.

4.3 Results and Analysis

Quantitative Comparsion. We compare our proposed model with NLEDN
[13], ReHEN [34], PReNet [26], RPDNet [22], MSPFN [10] and DRDNet [2],
which baseline models adopted supervised pattern, and SIRR [31], Syn2Real
[35] with semi-supervised methods under the three metrics of PSNR [9], SSIM
[40] and NIQE [20]. We trained our models on the synthetic datasets Rain200H,
Rain1200 and Rain1400, and compare the quantitative results obtained with
the training methods under the corresponding dataset, respectively. The metric
results are presented on Table 2 and Table 1. Our proposed method has achieved
the highest PSNR, SSIM and NIQE in all datasets.

Qualitative Comparsion. Figure 3 exhibits some synthetic examples on
Rain200H dataset. We can see that we proposed model can achieve the best
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Table 2. The values of PSNR and SSIM on four synthetic datasets. Red, blue and
cyan colors are used to indicate top 1st, 2nd and 3rd rank, respectively.

NLEDN [13] ReHEN [34] PReNet [26] AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain200H 27.315 0.8904 27.525 0.8663 27.883 0.8908 28.903 0.9074

Rain1200 30.799 0.9127 30.456 0.8702 27.307 0.8712 31.960 0.9136

Rain1400 30.808 0.9181 30.984 0.9156 30.609 0.9181 31.001 0.9246

Rain12 33.028 0.9615 35.095 0.9400 34.7912 0.9644 35.587 0.9679

RPDNet [22] MSPFN [10] DRDNet [2] AID-HWT

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rain200H 27.909 0.8923 25.554 0.8039 22.825 0.7114 28.903 0.9074

Rain1200 26.486 0.8401 30.390 0.8862 28.386 0.8275 31.960 0.9136

Rain1400 30.772 0.9178 30.016 0.9164 28.360 0.8574 31.001 0.9246

Rain12 35.055 0.9657 34.253 0.9469 25.199 0.8497 35.587 0.9679

results, while other baseline models also are left some artifacts or remaining rain
streaks. Especially, DRDNet [2] fails to work on Rain200H datasets. In addition,
we also provide some examples shown in Fig. 4 of real-world datasets to prove
the superiority of the proposed algorithm comparing with others. Expecially the
rainy scene in forth column, our method can well recognize the cropped area that
presents interspace between a trunk and the other, while the RPDNet [22] model
removed it and regard it as a rain streak; In addition, our model can remove
most of the rain streaks in the background while MSPFN [10] and DRDNet [2]
even leaves behind traces of rain streaks. To sum up, our proposed model can
adapt various rainy condition and restore image details and texture information
better.

4.4 Ablation Study

In this section, we analyse the proposed model by conducting various experi-
ments on Rain200H [28] datasets.

We analyze the network designment that consist of different attention mod-
ules, different location for residual attention connection, different recurrent stage
numbers, different unsupervised losses. The experiment results are illustrated in
Table 3, Table 4 and Table 5;

We adopt four attention block in ablation experiments on condition of the
residual attention location fixed on j = 1, 3, 5, such as SAN block [39], AFF block
[36], SC block [17] and CA block [32]; Further more, as for different combinations
of location for residual attentive connection (RC), we set four experiments on
different location, such as j = 1, 2, 3, j = 2, 3, 4, j = 3, 4, 5 and j = 1, 3, 5;
To explore whether unsupervised losses with HWT can play a key role in the
clean background predication, we set four experiments with LHH , LHL, LLH

and without HWT operation.
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Table 3. The results of different modules on Rain200H. The best results are highlighted
in boldface.

Experiments E1 E2 E3 E4 E5 E6 E7 E8

Single SAN Block �
Single AFF Block �
Single SC Block �
Single CA Block � � � � �
RA Connection on Location 1, 2, 3 �
RA Connection on Location 2, 3, 4 �
RA Connection on Location 3, 4, 5 �
RA Connection on Location 1, 3, 5 � � � � �
PSNR 28.871 27.423 28.581 28.903 28.646 28.587 28.398 28.903

SSIM 0.9066 0.8882 0.9027 0.9074 0.9054 0.9046 0.9042 0.9074

Table 4. The results of different stage numbers on Rain200H. The best results are
highlighted in boldface.

Experiments E9 E10 E11 E12 E13 E14 E15 E16 E17

1 Recurrent Stage �
2 Recurrent Stage �
3 Recurrent Stage �
4 Recurrent Stage �
5 Recurrent Stage �
6 Recurrent Stage �
7 Recurrent Stage �
8 Recurrent Stage �
9 Recurrent Stage �
PSNR 25.753 26.392 27.501 27.761 28.073 28.277 28.346 28.903 28.760

SSIM 0.8732 0.8817 0.8914 0.8949 0.8986 0.8991 0.9006 0.9074 0.9062

Analysis on Single Attentive Block. We adopted four different blocks, such
as self-attention block [39] (SAN), attention fusion feature block [36] (AFF), self-
calibrated block [17] (SC) and convolution attention block [32] (CA); When the
residual attention position is fixed on j = 1, 3, 5, the experiment results proves
that CA block can achieve better performance.

Analysis on Different Residual Attentive Connection. In order to explore
the connection of residual attention output from rain space to image space, we
conducted experiments on Rain200H to validate the effectiveness of different
connections. We set four experiments on different connection location, namely
j = 1, 2, 3, j = 2, 3, 4, j = 3, 4, 5 and j = 1, 3, 5. The experimental results show
that the location j = 1, 3, 5 can achieve best results on Table 3.

Analysis on the Number of Recurrent Stage. As the number of recurrent
stage increasing, the separation of a background layer and its rain streak layer



276 X. Cui et al.

Fig. 5. Examples about the comparison of different unsupervised losses on Real275.

tends to be obvious. In order to discover the optimal value of the recurrent
stage number, we set the stage T = 1, 2, 3, 4, 5, 6, 7, 8, 9; The experiments results
verified that the stage T = 8 achieve the best performance in terms of PSNR
and SSIM, whose specific results are shown on Table 4.

Analysis on Unsupervised Losses. At the stage of semi-supervised training,
in order to show the effectiveness of DWT discriminative loss, we conduct exper-
iments with LossHH , LossHL, LossLH and No-DWT that is our AID model. As
shown in Table 5, we set four different experiments to verify the unsupervised
losses effectiveness on Real275 datasets. Our final results also confirm that calcu-
lating the adversial losses of fHH , fHL and fLH between real-world clean image
and the generated clean background are more beneficial to image restoration.

Table 5. The analysis on unsupervised losses.

Experiments LHH LHL LLH AID AID-DWT

PSNR 28.557 28.574 28.491 28.548 28.903

SSIM 0.9040 0.9030 0.9028 0.9042 0.9074

5 Conclusion

In this work, we proposed a semi-supervised approach with residual attention
based on Haar wavelet transform to tackle image deraining, i.e., AID-DWT. We
design two sets of multi-layer residual block combined with the LSTM network
to divide the rainy image into streak layer space and image layer space, and
connect the two spaces through the residual attention block to accelerate the
convergence and removal of rain features in image layer space. Moreover, we
simultaneously calculate the adversarial losses on fHH , fHL and fLH between
real-world clean image and restorated background image to better predict clean
background image. Extensive experiments on synthetic and real-world bench-
mark datasets have validated the effectiveness of our AID-DWT, which quantita-
tively and qualitatively outperforms existing semi-supervised deraining methods
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and state-of-the-art supervised deraining methods. In future work, the proposed
semi-supervised framework has the potential to be extended to other relevant
low-level vision tasks, e.g., blind image denoising.
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